^{°°°°} Yeast Sequencing Reports

CNE1, a *Saccharomyces cerevisiae* Homologue of the Genes Encoding Mammalian Calnexin and Calreticulin

CLAUDIO DE VIRGILIO. NIELS BÜRCKERT, JEAN-MARC NEUHAUS, THOMAS BOLLER AND ANDRES WIEMKEN*

Department of Botany, University of Basel, Hebelstr. 1, CH-4056 Basel, Switzerland

Received 14 July 1992; accepted 6 September 1992

KEY WORDS — Saccharomyces cerevisiae; chromosome I; calnexin homologue; CNE1.

A DNA fragment of Saccharomyces cerevisiae with high homology to the calreticulin genes of different species (Fliegel et al., 1989; Smith and Koch, 1989; Murphy et al., 1990; Rokeach et al., 1991) and the calnexin gene of Canis domesticus (Wada et al., 1991) was cloned serendipitously from a genomic DNA library (Rose et al., 1987). It contains an open reading frame of 1506 nucleotides encoding a predicted gene product of 56.9 kDa. In addition, 258 nucleotides at the 5' non-coding region and 264 nucleotides at the 3' non-coding region were sequenced (Figure 1). Pulse-field electrophoresis of yeast chromosomal DNA followed by Southern blot analysis showed the gene to be localized on chromosome I. Furthermore, based on an analysis of restriction sites, the gene could be assigned to the cloned insert λ R23d (Kaback, 1992, personal communication; Kaback et al., 1989).

Computer analysis of the deduced amino acid sequence (Devereux *et al.*, 1984) revealed that the *S. cerevisiae* gene product shares significant similarity with the amino acid sequences of the calreticulins of *Homo sapiens* (48.9%), *Rattus norvegicus* (48.9%), *Mus musculus* (48.9%), *Oryctolagus* sp. (51.4%) and *Onchocerca volvulus* (54.4%), respectively (Figure 2).

*To whom correspondence should be addressed.

0749-503X/93/020185-04 \$07.00 © 1993 by John Wiley & Sons Ltd

The amino-terminal sequence of the S. cerevisiae gene product matches the features of a eukaryotic signal peptide which is sufficient to promote the translocation of a polypeptide across the endoplasmic reticulum (ER) membrane (von Heijne, 1990). However, the S. cerevisiae sequence lacks the C-terminal ER retention signal KDEL (Pelham, 1990) which is common to all mammalian calreticulins. In addition, the S. cerevisiae sequence shares an even higher degree of similarity (56.1%) with the sequence of the C. domesticus calnexin (Wada et al., 1991). Calnexin has been suggested to be a trans-membrane protein of the ER membrane with a typical transmembrane sequence and a cytosolic C-terminus that can be phosphorylated (Wada et al., 1991). The S. cerevisiae sequence also has a hydrophobic stretch in the C-terminal region which might function as a trans-membrane domain. The putative cytosolic tail is very short when compared with that of C. domesticus. Taken together, we suggest that the presented S. cerevisiae gene is the homologue of the C. domesticus calnexin gene and we propose the designation: CNE1. The complete DNA sequence of CNE1 has been deposited at the EMBL database (accession no. X66470).

1	TTTCTATCTCTTCATTCTTTGTACATTAGATACATGGTTTTTAGCTTAGTTTTATTTTATTTTATATATCTGGATGTATACTATTATTGAAAAACTTC
101	ATTAATAGTTACAACTTTTTCAATATCAAGTTGATTAAGAAAAAGAAAAT <u>TATTAT</u> GGGTTAGCTGAAAACCGTGTGATGCATGCCGTTTAAGGATTGTG
201	TAAAAAAGTGAACGGCAACGCATTTCTAATATAGATAACGGCCACACAAAGTAGTACTATGAAATTTTCTGCGTATTTATGGTGGCTGTTTTTGAATCTA
1	M k f s a y l w w l f l n l
301 15	GCGTTGGTGAAAGGCACTTCATTGCTATCCAACGTTACATTAGCGGAAGATTCTTTCT
401	AAGAGTGGATCACAAGTGAAGCCGTCAACAATGAAGGCTCTAAAATATATGGTGCACAATGGCGACTATCACAGGGTCGATTGCAAGGATCCGCATGGGA
49	E W I T S E A V N N E G S K I Y G A Q W R L S Q G R L Q G S A W D
501	TAAAGGAATCGCAGTTCGAACAGGCAATGCCGCAGCTATGATAGGACATCTCTTGGAGACACCTATTAATGTTTCAGAAACGGATACCTTGGTTGTCCAG
82	K G I A V R T G N A A A M I G H L L E T P I N V S E T D T L V V Q
601 115	TACGAAATTAAGTTGGACAATTCTTTGACGTGCGTGCGTG
701 149	ATACAGAGGGTGTCGAGTTAGTTTTTGGTCCGGATTATTGTGCTCCTGAAATAAAT
801	ATCTAAACTAAGATATTTGCAAGAGATGCCCCTGTCAAAATTAACTGATACCTCGCAATCTCATCTGTATACGCTCATAATAGATGAATCAGCGCAGTCT
182	SKLRYLQEMPLSKLTDTSQSHLYTLIIDESAQS
901	TTTCAAATTCTTATAGACGGTAAGACGGTTATGGTAAGAGAACATATCGAAGAAAAAGGTCAATTTTGAGCCACCCATTACACCGCCTTTAATGA
216	FQILIDGKTVMVREHIEDKKKVNFEPPITPPLMI
1001	TTCCTGATGTTTCAGTAGCGAAACCGCATGATTGGGATGATCGCATCCGAATCCCAGATCCTGAGGCGGTGAAGCTCAGTGATCGGGATGAACGAGACCC
249	P D V S V A K P H D W D D R I R I P D P E A V K L S D R D E R D P
1101	ATTGATGATTCCACATCCAGATGGCACTGAACCACCAGAATGGAACAGCTCCATCCCCGAATACATTCTTGACCCAAATGCTCAAAAGCCCTCGTGGTGG
282	L M I P H P D G T E P P E W N S S I P E Y I L D P N A Q K P S W W
1201	AAGGAACTTGAGCACGGGGAATGGATACCGCCCATGATTAAAAATCCTCTTTGCACTGCAGAACGTGGTTGTGGCCAGCAGATACCAGGGCTGATAAATA
316	K E L E H G E W I P P M I K N P L C T A E R G C G Q Q I P G L I N N
1301	ATGCCAAGTACAAAGGTCCAGGCGAACTCAATGAAATCATAAATCCCAATTACATGGGGGAATGGCATCCACCGGAAATTGAAAACCCGCTATACTACGA
349	A K Y K G P G E L N E I I N P N Y M G E W H P P E I E N P L Y Y E
1401	AGAGCAGCACCCATTGCGCATCGAAAACGTTATCAGTGGTGGTGGATCCTCGAGGAGCATCTCCAAACATGTTGATAAGCAACATTTATGTTGGT
382	E Q H P L R I E N V I 5 G V I L E F W 5 G 5 P N M L I 5 N I Y V G
1501 416	AAAAATGTAACAGAGGCGCAAATTATTGGGAATAAGACTTGGCTGATGAGAGACCGCGCGCG
1601	ATAGCAGACTAGGAAATCTACAAACAACTTTCCATAACGAAAGAGAATCCCCTAATCCATTTGACCGCATTATAGATCGCATATTAGAGCAACCTCTGAA
449	S R L G N L Q T T F H N E R E S P N P F D R I I D R I L E Q P L K
1701	ATTTGTGCTTACTGCGGCCGTCGTGCTCTTGACGACGTCGGTCTTTGTTGTGTAGTATTTACATAGTGGACAAGTGTTAGTTTATAACATGGTCTC <u>AAT</u>
482	F V L T A A V V L L T T S V L C C V V F T *
1801	<u>ANT</u> TGCACCACAACGGCTTCTCTTTTATAGATGGTTAACATTATAGTATCAATATTATCATCATG <u>ATTAAA</u> TGATGATGTATAATACTTACCCGATGTTA
1901	AATCTTATTTTTCATGCAGTAAGTAATCATGCAAC <u>AAGAAA</u> AACCCGTAATTAAGCGAACATAGAACAACTAGCATCCCCCGATAAGACGG <u>AATAGA</u> ATA

2001 GTAAAGATTGTGATTCATTGGCAGGTCCATT

Figure 1. Nucleotide sequence and deduced amino acid sequence of *CNE1* of *S. cerevisiae*. The predicted amino acid sequence is shown in single-letter code. One TATA box and potential polyadenylation sites are underlined.

1

с	1 megkwllcmllvlgttivgaheghdddmidieddlddviee
H S C	<pre>39 98 .11.vp.llgl.g.vaepavyfkeqf.dg.gwtsrwieskhksdfgk~fvl MKFSAYLWWLFINLALVKGTSLLSNVTLAEDSFWEHFQAYTNTKHLNQEWITSEAVNNEG ieevedskskpdts.ptspkvtykapvpsgevyadsfdrgt.sgl.k.kkddt</pre>
H O S C	99 158 sgkfygdeeklqtsqdarfyalsasffs-nkgqftv fygdavklkttqdakfysakfdksfs-nkgksi.fsv SKIYGAQWRLSQGRLQGSAWDKGIAVRTGNAAAMIGHLLETPINVSETDTLVVQYEI ddeiak.dgk.evdemketklpglvlmsrakhha.sak.nk.fl-fd.kp.iv
H O S C	159 218 .heqnidgyvfpnsld-qtdmhg.synimi.g.gtkk.hvif.y.gk .heqdidgyvasd.nedshge.p-yhimi.g.gtkk.hvifhy.dr KLDNSLTCGGAFIKLMSGFMNVEALKHYAPDTEGVELVFGPDYCAPEINGVQFAIN-KVD nfq.gieyvl.ktpelndqfhdk.p-ytimk.gedy-klh.ifrh.np
H O S C	219 278 nvlinkdi.ckdeftvr-pdntyevknsq.esgsled nhmikkdi.ckdvftvndntyevqekaesg.lea KITHESKLRY-LQEMPLSKLTDTSQSHLYTLIIDESAQSFQILIDGKTVMVREHIEDKKK .tgvyeekhakrpdad.ktyftdkktln-pdnev.qsi.nsgnlln
H O S C	279 338 wdflkk.k.pdas.ee.ak.d.tds.pe.w wdflkk.k.pdak.ee.ef.d.eddk.pe.w VNFEPPITPPLMIPDVSVAKPHDWDDRIRIPDPEAVKLSDRDERDPLMIPHPDGTEPPEW mtvn.sre.e.pedq.ee.pkdpd.wn.da.ak.deea.k.dg.
н о с	339398dkh.pd.ked.d.emdev.q.peewdkh.pd.ked.ddemdemvd.peewNSSIPEYILDPNAQKPSWWKELEHGEWIPPMIKNPLCTAERGCGQQIPGLINNAKYKGPGIddevpd.eed.d.dmdea.q.ak.esapvwqrpm.d.pnkw
н о с	399 458 kprq.dd.k.t.ihd.e.spdpsiyaydfgvlg.dl.qvksgtifd.flitn kpkqkka.k.k.ihi.d.tpddnlyvyddgaigfdl.qvksgtifddvi.td ELNEIINPNYMGEWHPPEIENPLYYEEQHPLRIENVISGVILEFWSGSPNMLISNIYVGK kppm.dq.i.k.rk.pdff.dle.fkmtl-f.aig.ll.mtsdiffd.fi.cg
H O S C	459518deay.eefegvtka.ekqmkdkqdeeqrls.ekkf.elkitregekkgkktkkqkNVTEAQIIGNKTWLMRDRAFRGSDGPTERKFMNSRLGNLQTTFHNERESPNPFDRIIDRIdrrvvddwa.dg.glkka.dgaaepgvvgqmieaaeerpwlwvvyvltval.vflv.lfc
H O S C	519 578 keeedkkrkeeeaadkeddedkdedeedeed kkeknekikkekmkkrkranrkkkk* LEQPLKFVLTAAVVLLTTSVLCCVVFT* csgkkqsspveykktdapqpdvkeeeekeeekdkgdeeeegeekleekqksdaeedggt
н С	579 609 keedeeedvpgqakdel* asqeeddrkpkaeedeilnrsprnrkprre*

Figure 2. Comparison of the amino acid sequence of CNE1 (S) with calreticulin from H. sapiens (H) and O. volvulus (O) and calnexin from C. domesticus (C). Identity with CNE1 is indicated by `.` and gaps are indicated by `.`

,

ACKNOWLEDGEMENTS

We are grateful to P. Linder for helpful comments and to R. Doelz for maintenance of computer facilities. This work was supported by the Swiss National Science Foundation, Grant 31-27923.89.

REFERENCES

- Devereux, J., Haeberli, P. and Smithies, O. (1984). A comparative set of sequences analysis programs for the VAX. *Nucleic Acids Res.* **12**, 387–395.
- Fliegel, L., Burns, K., MacLennan, D. H., Reithmeir, F. A. F. and Michalak, M. (1989). Molecular cloning of the high affinity calcium-binding protein (calreticulin) of skelctal muscle sarcoplasmic reticulum. J. Biol. Chem. 264, 21522–21528.
- Kaback, D. B., De Steensma, H. Y. and De Jonge, P. (1989). Enhanced meiotic recombination on the smallest chromosome of *Saccharomyces cerevisiae*. *Proc. Natl. Acad. Sci. USA* 86, 3694–3698.
- Murthy, K. K., Banville, D., Srikant, C. B., Carrier, F., Bell, A., Holmes, C. and Patel, Y. C. (1990). Structural homology between the rat calreticulin gene product

and the Onchocerca volvulus antigen Ral-1. Nucleic Acids Res. 18, 4933.

- Pelham, H. R. B. (1990). The retention signal for soluble proteins of the endoplasmic reticulum. *Trends Biochem. Sci.* 15, 483–486.
- Rokeach, L. A., Haselby, J. A., Meilhof, J. F., Smeenk, R. J., Unnasch, T. R., Green, B. M. and Hoch, S. O. (1991). Characterization of the autoantigen calreticulin. J. Immunol. 147, 3031–3039.
- Rose, M. D., Novic, P., Thomas, J. H., Botstein, D. and Fink, G. R. (1987). A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60, 237–243.
- Smith, M. J. and Koch, G. L. E. (1989). Multiple zones in the sequence of calreticulin (CRP55, calregulin, HACBP), a major calcium binding ER/SR protein. *EMBO J.* 8, 3581–3586.
- von Heijne, G. (1990). The signal peptide. J. Membrane Biol. 115, 195–201.
- Wada, I., Rindress, D., Cameron, P. H., Ouk, W.-J., Doherty II, J. J., Louvard, D., Bell, A. W., Dignard, D., Thomas, D. Y. and Bergeron, J. J. M. (1991). SSRα and associated calnexin are major calcium binding proteins of the endoplasmic reticulum membrane. J. Biol. Chem. 266, 19599–19610.